

Turbomolecular Pump Station (TMPS) Standardization

Considerations for Turbomolecular Pump Station Requirements

Dan Weiss Brookhaven National Laboratory

TMPS Standardization Considerations

- Applications & Scope
- Performance & Operating Requirements
- Operating Environments
 - » Rad Hard TMP and Electrical Components
- High & Low Level Control System Interface
 - » Proposed Schematic
- Issues

Application & Scope

LINAC

- »Roughing
- »Insulating Vacuum, Permanent

Ring

- **»**Roughing
- »Ion Pump Protection, Permanent (13)
- »Pumping at Beam Dump Windows (3)
- »Supplemental Ion Pump Protection, Temporary (2)
- »Quantity of 18

Performance & Operating Requirements

- Performance
 - »Pumping Speed
 - <200 Liters/sec Covers all Ring applications</p>
 - »Design Base Pressure
 - <1x10⁻⁸ Torr Covers all Ring applications
- Operating Modes
 - »Portable
 - »Roughing, Pumping
 - »Local, Remote
 - »Interlocks
 - Pump station protection
 - Accelerator Protection

Operating Environments

- Ring
 - » Residual Activation
 - ALARA: Impact to Personnel Activities
 - Entire Station is permanent
 - Turbopump is permanent
 - » High Radiation During Operation
 - Impact on Component Designs
 - Possible Impact on Remote Operation Design
 - Possible Impact on Installation Design
- LINAC
 - » Low Radiation
 - Less Restrictive

Example of a Rad Hard TMPS electrical component

- radiation exposure to 10⁸ rad = 10⁶ J / kg
- The mechanical Frequency Converter TCP 010 drives the PFEIFFER TMH/U 260 with three-pase current. It generates the drive frequency for the rotation speed of the pump and is suitable for the operation of systems where there is a high incidence of radiation and interference voltage peaks.

- Uses an electro-motoric drive without semiconductors.
- Turbopump is monitored and interlocked with the TCP 010 and TCA 010.
- The integrated thermo switch operates in conjunction with the TCA 010 to switch off the frequency converter when the permissible temperature is exceeded

Example of a Rad Hard Turbopump

- radiation exposure to 10⁸ rad = 10⁶ J / kg
- Includes metal seals in body and hall probes for speed measurement
- Compound pump, suitable for UHV vacuum with dry backing pump (i.e., high compression ratio).

8. Technical Data

Feature	Unit	TMH 260 TMH 260 P	TMU 260 TMU 260 P
Connection nominal diameter Inlet Outlet Venting connection		DN 100 ISO-K DN 25 ISO-KF G 1/8"	
Frequency Converter Nominal rotation speed Run-up time (up to 90% of the	1/min	TCP 010 45 000)
rated rotation speed) Noise level Final pressure, backing pump	min dB (A) mbar	3 < 50 < 5	
Max. permissible rotor temperature Permissible heat radiation power	°C W	90 6	
Volume flow rate for: Nitrogen N ₂ Helium He Hydrogen H ₂	Vs Vs Vs	160 165 100	
Max. gas throughput ¹⁾ N ₂ He	mbar I/s mbar I/s	3.5 4.0	
Final pressure ²⁾ with rotary vane vacuum pump with diaphragm vacuum pump	mbar mbar	5 · 10 ⁻¹⁰ 1 · 10 ⁻⁸	

G-2 Turbo station

- 100% vendor items

High & Low Level Control System Interface

- Electromechanical based local interface⁽¹⁾
- I/O based remote interface⁽¹⁾
 - » PLC Architecture supports approach
 - Quantity I/O
 - independent PID loops
- Interlocks (Low and/or High Level Control) (1,2)
 - » Pump station protection
 - » Accelerator Protection

- (1) Unless shielding of electronics is implemented, or rad hard components are identified.
- (2) Some interlocking features may be incorporated at the local (low) level depending on vendor products.

Electromechanical Based System Schematic

TMPS Standardization Issues

- Applications and Scope
 - » Applications are similar
 - » Non-standard features (if needed) should be cost effective for required quantities
- Performance & Operating Requirements
 - » All requirements point to a common pumping system
 - » Identify portability (or other logistical) requirements combined with need for remote control
- Operating Environments
 - » Radiation environment in ring (ALARA) is most restrictive TMPS consideration
 - » Commercially available rad hard electronics?
 - eliminates any need for custom boxes
 - degree may dictate component placement and shielding
- High & Low Level Control System Interface
 - » I/O (& analog) baseline
 - » Back-up is RS-485 network if rad hard components are identified
 - » Establish interlock and I/O requirements for each application
- Need to identify other vendors and products suitable for radiation environment
 - ~\$15k per station